Dr. D Talks About... the Dumont/Willis Extra Easy Evaluation Battery (DWEEEB)

CHAPTER 1 Introduction

CHAPTER 2 Development and Standardization

CHAPTER 3 General Testing Considerations

CHAPTER 4 Directions for Administration and Scoring

CHAPTER 5 Statistical Properties of This Test

CHAPTER 6 Validity

CHAPTER 7 Norm's Data
Introduction

Nature of the Scale

The Dumont-Willis Extra Easy Evaluation Battery (DWEEEB) is rip off revision of an ever popular test we all know and love. It is an individually administered clinical instrument for assessing none of the intellectual abilities of children. Although intended to assess no ability in children aged 6 years through 16 years, 11 months, it has found extensive use by those wishing a quick and dirty assessment. Although it retains little if any essential features of its predecessor, it provides current normative data and updated test materials, test content, and administration procedures. As with its predecessors, a child's performance on the DWEEEB is summarized by the three composite scores: the Very Idiotic Quotient (VIQ), the Probably Idiotic Quotient (PIQ), and the Full of Shirt Idiotic Quotient (FSIQ).

Underlying Conception of Intelligence

Intelligence can manifest itself in many ways (none of which are measured here), and it is that reason that Dumont and Willis conceived of intelligence not as a particular ability by as an aggregate and global entity. In the manuscript for their tome, The Measurement of Other Children's Intelligence (unfortunately lost when moved from one apartment to another) they summarized intelligence as the "vocal tic of psychologists. It is the capacity for the individual to take a stupid test and then have someone generalize from it how well s/he (added for political correctness) will do on some other stupid task." Each activity in this assessment is intended to reflect all intelligent behavior. Assessors will find this test especially important when they have predetermined ideas about how a child should perform. Normative data is provided so that the scores can be manipulated to serve the purpose of the evaluator. (You would do it anyway. This test does it for you!)
Antecedents of the Scale

The genealogy of the DWEEEB began the day testers decided to give tests the way they wanted and to ignore how the test publishers described. Expert testers (that's you) know better how a test should be made and administered than do any of those "Ivory tower" bureaucrats and even more than those number crunching nerds who call themselves statisticians. Since the day of castrating tests - like the Stanford Binet, the CELF-R, the DTLA-1 (2, 3), and even that most venerable of all tests: the WRAT - visions of a quick and dirty IQ test have loomed in our heads. If only someone would develop and publish one, we could use it and blame the publisher for the results. Who cares if its good....its published! That, all by itself, makes it usable and justifiable.

Development of the DWEEEB

Research indicates a lot about the use of short form IQ tests. None of it will be quoted here. You don't need the research. You are the expert. (Keep saying that to yourself. Repeat it like a sacred mantra.) Besides, most of what the research says would suggest you shouldn't do what you are going to do with this instrument, so not knowing about it is probably best.

It would be nice to say that the development of the DWEEEB took a long time, just like it would be nice to say that there is an Easter Bunny. Unfortunately, it ain't so. The DWEEEB took maybe 10 minutes to create and it had its inception over a bottle of Bud light.

Organization of the Scale

The DWEEEB is composed of 7 subtests, all revolving around a single item and a single concept. As mentioned earlier, it is organized into two scales: the VIQ and the PIQ. Table 1.1 lists the subtests under their respective groups; the number before the subtest indicates the subtest's position in the standard order of administration. (This order can obviously be changed at the whim of the expert. That is of course, YOU. Feel free!)

<table>
<thead>
<tr>
<th>VIQ</th>
<th>PIQ</th>
</tr>
</thead>
<tbody>
<tr>
<td>2. Name This</td>
<td>1. Silly Put Together</td>
</tr>
<tr>
<td>5. By the Numbers</td>
<td></td>
</tr>
<tr>
<td>6. Likeables</td>
<td></td>
</tr>
</tbody>
</table>
The child's performance on these silly measures yields three composite scores. The sum of the scaled scores on the Verbal section yields the VIQ, and the sum of the scaled scores from the Performance section yields the PIQ. Add them together and what do you get? The FSIQ.

Table 1.2 Description of the DWEEEB Subtests

<table>
<thead>
<tr>
<th>Subtest</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Silly Put Together</td>
<td>A single puzzle of a common object, presented in any configuration the expert decides, which the child assembles to form the meaningful whole.</td>
</tr>
<tr>
<td>Name This</td>
<td>The child is asked to verbally describe what the object is that was created during the Silly Put Together subtest.</td>
</tr>
<tr>
<td>What's Missing</td>
<td>The common object created during the Silly Put Together subtest is missing an important element which the child identifies.</td>
</tr>
<tr>
<td>Jeopardy Question</td>
<td>A single question that taps the child's knowledge is asked.</td>
</tr>
<tr>
<td>By the Numbers</td>
<td>A math problem is asked which the child solves mentally and responds to orally.</td>
</tr>
<tr>
<td>Likeables</td>
<td>An orally presented pair of words is given for which the child explains the similarity of the pair.</td>
</tr>
<tr>
<td>I Know What to Do</td>
<td>An orally presented question that requires the child to solve an everyday problem.</td>
</tr>
</tbody>
</table>

The DWEEEB in a nutshell

The child puts together the single silly puzzle that makes a lightbulb (Silly Put Together). The child is then asked to tell what it is (Name This). Next the child indicates what is missing (What's Missing), and then asked who invented it (Jeopardy Question). Next a math problem involving the lightbulb is asked (By the Numbers). Next, how are a lightbulb and a lamp alike (Likeables). Finally, why do you shut the lightbulb off? (I Know What to Do). Seven subtests, 1 item.

Applications of the DWEEEB

As a measure of global intellectual ability, the DWEEEB is useless and inappropriate for a number of purposes. These include psychoeducational assessment as part of educational planning and placement, diagnosis of exceptionality among school-aged children,
clinical and neuropsychological assessment, and research. Having said that, use it anyway. Remember Rule #8. (Special rules for evaluation will be discussed in detail later. Keep reading.)

- Diagnosing Mental Retardation
 Use something else!
- Diagnosing Severely Intelligent
 Use something else!
- Diagnosing Neuropsychological Impairments
 Use something else!

User Qualifications

Because of the ease of test administration, diagnosis, and assessment, examiners who use the **DWEEB** need not have any formal training and experience in the administration and interpretation of standardized, clinical instruments. Formal training may in fact hinder proper use of this tool. It is not the responsibility of the test user to ensure that the test materials, including the protocols, remain secure.

In most cases, examiners who use the **DWEEB** will have completed at least the tenth grade in a public school. Although a trained monkey can administer the subtests and probably score the test as well as a qualified examiner, the results should always be interpreted only by the expert (that's you!) unless you can get this monkey to do it for you.
Development and Standardization (sic)

Development

The DWEEB was developed with several goals in mind.

The primary goal in the development of the DWEEB was, plain and simple: to make money.

A second, much less important goal was to maintain the integrity of the original test by providing a well standardized, reliable and valid measure of the enduring theoretical underpinnings of the scale - the general factor, better known as Gee. This goal was not reached.

The third goal of the DWEEB was the destruction of factor structure. Because unpublished research has shown that examiners (experts) don't know or care about factor structure, and couldn't tell an oblique rotation from an orthogonal one if their wives depended on it, the test author simply ignored this and made up the whole chapter on Factors. (Don't tell anyone).

The fourth and final goal of the development of the DWEEB was the improvement of subtest content. Extensive files of user inquiries, resulting from an unstructured questionnaire/telephone survey of a few close friends who think very much as the test authors, detailed lists of improvements suggested by numerous unknown people at local bars, and comments from consultants provided a wealth of information not used in the revision process.

Having reached 3 out of 4 goals (75th percentile), this project was deemed a complete success.
Description of the Sample

The DWEEB norms presented in this manual are derived from the standardization sample that was not representative of the U.S. population of children. A stratified random sampling plan was not used to ensure that the representative proportions of children from each demographic group would be included in the standardization sample. The following sections presents the characteristics of the DWEEB standardization sample.

Age: The standardization sample of 22 cases did not include 200 children in each of 11 age groups.

Gender: The sample included almost equal numbers of male, female, and neuter in each age group.

Race: For each age group in the standardization group, a three-legged, 200 yard dash was run. A great time was had by all.

Geographic region: The United States was divided into forty major geographic regions specified by no known source. (see Figure 2.1)

![Geographic regions for Standardization Sample](http://alpha.fdu.edu/psychology/DWEEBChap2.html (2 of 5) [6/13/02 11:44:22 AM])

Parent Education: The sample was stratified (whatever that means) according to the following parental education categories:

- Yes
- No
Locating and Testing the Sample

Invitations to participate in the DWEEE B standardization were mailed to every school district in the United States. Unfortunately, we forgot to include any return address and thus had a 100% non-return rate. Oops!! See Figure 2.2:

![Figure 2.2 DWEEE B Invitation Sent to School Districts](image)

Representativeness of the Sample

Figure 2.3 says it all.

![Figure 2.3 Representativeness of the Sample](image)

Tables 2.2-2.5 should present in great and extensive detail the demographic characteristics of the standardization sample. This data would have been helpful but the charts were too difficult to create so they were faked. A picture of an outside consultant administering a DWEEE B at a table is presented instead.
Table 2.2-2.5 Consultant Administering the DWEEB on a Table Sample by Community Size

<table>
<thead>
<tr>
<th>Community Size</th>
<th>DWEEB Sample</th>
<th>U.S. Population</th>
</tr>
</thead>
<tbody>
<tr>
<td>Metropolis</td>
<td>0.0</td>
<td>?</td>
</tr>
<tr>
<td>Statistical Area (MSA)</td>
<td>0.0</td>
<td>?</td>
</tr>
<tr>
<td>Over a billion</td>
<td>0.0</td>
<td>?</td>
</tr>
<tr>
<td>A little less than a billion</td>
<td>100.0</td>
<td>100.0</td>
</tr>
<tr>
<td>Total</td>
<td>100.0</td>
<td>110.0</td>
</tr>
</tbody>
</table>

Table 2.6 Percentages of the Standardization Sample by Community Size

Qualitative Descriptions of the DWEEB FSIQ Scores

Many examiners utilize a qualitative system as well as a quantitative system to describe a child's performance. Table 2.7 presents specific IQ score ranges and their corresponding categories and diagnostic classifications. Don't, however, let this stop you from developing your own labels. Everyone knows that if a test has a mean of 100, then any score (99 to 0) should be considered BELOW AVERAGE. The same holds true for the individual scaled scores with a mean of 10. All numbers, 9 to 0, are definitely below average and indicate some measure of
impairment. If a score does fall at the mean or above, don't let that stop you from reporting weaknesses and impairments. Attach statements to your report that indicate how easy it was for the child to get the score, or for that matter how 'difficult' it was for the child to get the score. Always remember regression to the mean, and since no one other than yourself will be able to explain its meaning, tell everyone it means that a high score is really a low score because it has to be regressed to the mean. Keep saying it and someone will believe they understand what you mean.

<table>
<thead>
<tr>
<th>FSIQ</th>
<th>Classification</th>
<th>Theoretical Normal Curve</th>
<th>Actual Sample</th>
</tr>
</thead>
<tbody>
<tr>
<td>130</td>
<td>Very Good</td>
<td>2.2</td>
<td>2.222</td>
</tr>
<tr>
<td>120-129</td>
<td>Almost Very Good</td>
<td>6.7</td>
<td>6.7859</td>
</tr>
<tr>
<td>110-119</td>
<td>Pretty Good</td>
<td>16.1</td>
<td>83.0</td>
</tr>
<tr>
<td>90-109</td>
<td>Okay</td>
<td>50.0</td>
<td>50.123</td>
</tr>
<tr>
<td>80-89</td>
<td>Oops</td>
<td>16.1</td>
<td>12.03</td>
</tr>
<tr>
<td>70-79</td>
<td>Below Oops</td>
<td>6.7</td>
<td>21</td>
</tr>
<tr>
<td>69 and below</td>
<td>Come on!! Try harder!</td>
<td>2.2</td>
<td>2.2</td>
</tr>
</tbody>
</table>

Table 2.7. Qualitative Descriptions of the DWEEB FSIQ Scores
General Testing Considerations

Basic Principles for Using the DWEEEB

The basic principles to be utilized when administering the DWEEEB should follow the tenets of NONSENSE. (Cisco and Eggbert, 1992) This is a way of testing that uses a simple, time honored, and clinically unheard of approach. Following are the eight rules of NONSENSE:

1. **Number of tests:** "The more the merrier" would be applicable except that we are trying to save time while making big bucks. Don't choose a few well normed, statistically valid and reliable tests for your battery. Whole tests are time consuming. Instead give as few tests, or preferably subtests of tests, as you can in the time allotted for evaluation. The fewer you give the better. Although the more tests given would generally make it easier to find the problem and to be the expert—you are the expert. You don't need as much as the next guy or gal.

2. **Opinion:** This is extremely valuable and refers only to your opinion. What you think is probably true so use it to your advantage. Don't ever call it opinion though. Dress it up and call it "clinical judgment." Your clinical judgment is better than any test, and better yet, who can challenge it?

3. **Norming samples:** They don't really matter. Tests are published and therefore they are good. The DWEEEB is a classic example. A publisher surely wouldn't sell a test if it weren't doing what it says it is and if it weren't a good test. If the number of children in the norming sample happens to be low or non existent, that's okay. Parents don't need to know that the judgment being made about their 3rd grade child's ability is based on only 5 3rd graders. No one in a team meeting will ever dare to challenge you anyway. You're the expert. (Remember rule #8 and if you follow rule #5, no one will ever be able to challenge you.) Let the child you test be the norm sample. If you're especially lucky, his name will be Norm!
4. **Standardization procedure:** Digress from standard practice all you want. That is one of the beautiful things about the DWEEEB: there is no standardized procedure to digress from. Really how much can that effect a score anyway? You know best how to evaluate. Raise or lower scores when necessary by careful probing. It won't matter that the manual says not to (and this one doesn't), you're the boss and you have a job to do. Remember rule #2. Prove what you set out to prove. Precognition increases your ability to be the big E: Expert.

5. **Esoterica:** Using many unknown or little used tests is always best. And how many have heard of this little beauty? Test like the DWEEEB are hard to challenge and have a strong tendency to show what you know to be true. It will be difficult for anyone to prove your judgment wrong when no one can dispute the tests you've used. Subrule 5a: Never provide the norms to others. You spent valuable time finding the norms you use. If you had to find them, so shouldn't everyone else!

6. **Nothing wrong?:** This is impossible. If you evaluated properly, you will find the offensive problem, and if that didn't work, evaluate improperly. Remember, you're an expert. If you don't find it, someone smarter and with more experience or better clinical judgment will surely find it. When in doubt, return to rule #1. Give more. Keep looking. You'll find it.

7. **Statistics are not important:** If challenged, remember and use Mark Twain's remark about lies: "There are three kinds of lies: Big lies, little lies, and damned statistics." Disregard the statement of Johnson: "Beautiful ideas are often destroyed by ugly facts." No one will remember that one anyway. Quoting Mark Twain increases your stature and reinforces rule #8.

8. **Expert:** That's you. Don't forget it. Act like it. That's why you are paid so much.

Applicable Age Ranges

The DWEEEB was designed for use with children aged 6 years to 16 years 11 months. The test items, materials, and administration procedures were supposed to be designed for their suitability for these age groups. Be that as it may, use the test any way you wish. Think of it as a womb to tomb test.

Standard Procedure

The purpose of the DWEEEB is to assess a child's performance under a fixed set of conditions. In order to obtain results that are interpretable according to the national norms, you might want to adhere carefully to the administration directions given in Chapter 4 but if you don't, that's okay. You can decide what a "fixed set of conditions" is. Changes in the phrasing or presentation of the test items, modifications of the time limits, or other deviations from the standard subtest directions are
encouraged. Someone might tell you that this would reduce the validity of the test results, to which you should coolly reply "Prove it."

Administration Time

Administration of the regular battery of 7 subtests should be done at 9:00 AM EST.

Physical Conditions

The physical setting - whether in a clinic, school, office, bar, nightclub, storage closet, boiler room, or private home - can affect the child's performance. To maximize potential distractions or interference, conduct the test in a crowded, noisy, ill-lit, stuffy, smelly room. As a rule, the more people in the room the better.

Seating arrangements may be important. I'm not sure why or how, but the publisher wanted me to say so. "SO." Figure 3.1 illustrates the suggested seating arrangements. This suggested arrangement ensures that you can easily reach and handle all administration and scoring material.

Figure 3.1 Suggested Seating and Materials Arrangement

Table 3.1. Materials Included in the DWEEB
Establishing and Maintaining Rapport

A cooperative relationship between the child and the examiner must be avoided at all costs. As in all interaction with children, a loud, threatening, punitive tone will promote acquiescence. Do not attempt to put the child at ease. They are there because there is something wrong with them, otherwise why are they being tested? Do not engage in informal conversation about the child's activities or interests. You really don't care. Why waste the time? Stick to the test. If the child is shy or fearful, all the better. Any time devoted to building rapport is time poorly spent. However, if you are paid on a per hour contractual basis, disregard all you just read. Slow down. Take you time. Keep track of the hourly rate. Certainly do not give the DWEEEB. Give the Dumont-Willis Extra Easy Evaluation Battery-Very Very Long Form (DWEEEB-VVLF). This is used to ensure many billable contact hours. (That's another story.)

Figure 3.2. Rapport being established by the psychologist before administering the DWEEEB.

Teaching Items

None of the DWEEEB subtests provide any form of teaching or correction. The purpose is to ensure that the child who is low
functioning, or who you want to be, does not understand the task. To provide additional instruction to the child who has failed one of the items would only confound the results.

Teaching after failure on an item would be silly, since on the DWEEEB, there are no chances after the first. Consider this a 'power test.' Teaching simply serves to frustrate the child and to take more time. Don't bother.

Below is a fine example of two psychologists (Cisco and Eggbert) "team teaching" a student the rudiments of the DWEEEB. Note the cooperative way the two noted psychologists "assist" the student on this particular teaching item.

Repetition of Items and Probing of Responses

Except where specifically allowed in the directions you may never repeat the directions or the questions if the child requests repetition or appears not to understand the task. Think of the questioning as a clinically important sign. The child is being obstinate and willfully not listening, or is trying to 'pull your chain.' Don't feed into this. Hold your ground, its your test!

Sometimes a child will respond with "I don't know" to an item. If you believe that the child knows the answer to the question, fail them on the item anyway. Do not give credit if the child responds correctly after they have given an incorrect answer.

If a child refuses to respond to an item by saying "I can't do it" or stops working on an item before the time limit expires, harshly reprimand the child to proceed. Use statements such as What are you, a baby? Try it! or We'll stay here until hell freezes over or you get this correct! When needed repeat this command often and increase the threat from each.
All incomplete or ambiguous responses to Verbal subtest items must be queried. The item instructions for the Likeables, Name This and I Know What To Do subtests include a number of sample responses followed by a (Q). This (Q) indicates that the response or any equivalent response must be a queer verbalization and will need to be interpreted as part of a Serious Emotional Disturbance evaluation. Sometimes it can be fun to use a threatening tone and forceful statements such as What the heck does that mean? or Are you kidding. Give me a break. or finally Tell me more about your mother.
CHAPTER 4

Directions for Administration and Scoring

Some general statements should have gone here, but we got tired of coming up with witty things to say so we didn't. Just turn the page.

1. Silly Put Together

Materials

- 1 Silly Put Together puzzle
- Something big to hide the puzzle from the kid
- Stopwatch

Description

For this subtest, the child tries as hard as they can to put together a silly puzzle depicting a supposed common object. For the puzzle, the child performs under a strict time limit that can be loosely monitored by the examiner.

Start

Since there is only one puzzle, start with it!

Discontinue

What do you think. One puzzle! One starting point! One stopping point! Pretty difficult?

General Directions
● Use some big, threatening, object for a shield. This layout shield is important for a number of reasons: 1. The kid shouldn't be allowed to see the pieces before the actual time starts. The screen will help to increase the anxiety level and also show the kid who is boss. 2. The screen will allow the astute examiner to observe the first sign of a conduct disorder: The child who looks over the screen. This most certainly becomes part of the interpretation in the write up. It is undoubtedly an early warning sign for the cheater in the classroom or a future ax murderer.
● If the child is still working and nearing completion of the puzzle when the time limits expires, you must make a decision. If you want the score to be higher, simply ignore the time. Give a few (45 to 60) seconds so the child can complete the task. Record the time as the maximum allowed time so no one will discover what you've done. On the other hand, if you want the score lower, stop a few seconds early. The kid can't see the stop watch so they'll never know. These decisions must be made carefully and with considerable judgment. An example of clear judgment would be stopping the clock early because the child clearly is not up to the task. This is evident because "The kid doesn't look very smart."
● If the child turns over a piece of the puzzle, slap them aside their head and yell at them. You have already told them to do it quickly and turning a piece over is not following the directions.

Item Instructions

Item 1. Light Bulb (Time limit: 120")

● Arrange the pieces behind the big threatening object, according to some strange arrangement. As you are arranging the pieces, say to the child: "Now I am going to ask you to put together this silly puzzle."
● Expose the array (that means the puzzle) and say: "If you put these pieces together the wrong way, they won't make a thing-a-magig. I know what it is, I just can't remember it. Go ahead and put them together. If you want a good score tell me when you are through."
● Begin timing.
● If the child's assembly is incomplete, record the number of correct junctures completed within the time limits. If the assembly is complete, say: "Big deal. Most kids can do it. Don't get a swelled head."

Scoring

The score for this Silly Put Together is determined by the number of correct junctures and the completion time. It is important to be completely familiar with the scoring system so that you can score the item immediately. This should be done. There is no good reason for it but do it anyway.

● A juncture is considered correct if you think it should be.
● For partial assemblies completed within the time limit, multiply by the appropriate number indicated on the record form.
● For perfect assemblies, bonus ribbons should be given to the child along with the extra points.

Score for Completed Silly Put Togethers with Time-Bonus Points Included

<table>
<thead>
<tr>
<th>Time limit (seconds)</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>22</th>
</tr>
</thead>
<tbody>
<tr>
<td>Item</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
2. Name This

Materials

- 1 Silly Put Together puzzle (assembled by the child)

Description

For this subtest, the child attempts to tell the examiner the exact name for the assembled Silly Put Together puzzle. Although there may be thousands of ways to correctly name the puzzle, only those recorded in the manual are correct.

Start

Since there is only one puzzle to name, guess what! (See the starting rule for Silly Put Together for further clarification.)

Discontinue

What do you think. One puzzle! One starting point! One stopping point! Dah!!

General Directions

- Before presenting the item as a test, say: "I am going to show you the picture of a thing-a-magig. I want you to tell me what it is, because I can't remember it."

Item Instructions and Sample Responses

1. Lightbulb

<table>
<thead>
<tr>
<th>Correct Responses</th>
<th>Incorrect but questioned</th>
<th>Clearly wrong</th>
</tr>
</thead>
<tbody>
<tr>
<td>20 points:</td>
<td>1 point:</td>
<td>0 points:</td>
</tr>
<tr>
<td>Light</td>
<td>A stupid puzzle (Q)</td>
<td>What the F...</td>
</tr>
<tr>
<td>Bulb</td>
<td>Dawn's early (Q)</td>
<td>Lightboob</td>
</tr>
</tbody>
</table>
3. What's Missing

Materials

- 1 Silly Put Together puzzle (assembled by the child)
- Stopwatch

Description

For this subtest, the child attempts to tell the examiner the exact name for the part of the Silly Put Together puzzle that is missing. The child must respond within a 20 minute time limit.

Start

Give me a break. If you don't know by now, you are a competent examiner. (See the starting rule for Silly Put Together for further clarification.)

Discontinue

Dah!!

General Directions

- Before presenting the item, say: "I'm going to show you a silly puzzle. That's right, this one right here. Stop laughing and fidgeting or you can stay in for recess. Look at this thing, and tell me what's been cleverly erased by high tech computer enhancement. It is the most important thing missing if you want this lightbulb to work correctly. Of course, if you want to fill it with gasoline and use it as a Molotov Cocktail, I suppose you could, but then I'd be asking you what is the thing to do if a boy (girl) much smaller than you.....wait a minute...just tell me what the heck ain't there! "

http://alpha.fdu.edu/psychology/DWEEBChap4.html (4 of 10) [6/13/02 11:44:28 AM]
allow 20 minutes exposure time. after that put gloves on or you run the risk of frostbite.

- if the child responds incorrectly, say: "yes, but that isn't right. try again. look harder. its near the middle."
- if the child names some unessential part that is off the page, score as correct and move on.
- if the child throws up, you're on your own.

Item Instruction

<table>
<thead>
<tr>
<th>Item</th>
<th>Missing Part</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lightbulb</td>
<td>Wires</td>
</tr>
<tr>
<td></td>
<td>Filament</td>
</tr>
<tr>
<td></td>
<td>Cobweb</td>
</tr>
<tr>
<td></td>
<td>Gossamer</td>
</tr>
<tr>
<td></td>
<td>Socket (wrench)</td>
</tr>
<tr>
<td></td>
<td>[If the child says "The Doll," say Show me where you mean.]</td>
</tr>
</tbody>
</table>

Scoring

- record 1 point for each correct response.
- most children give a verbal response for the missing part. sometimes, however, a child will merely point. rapping the knuckles with a wooden ruler has been found to be particularly effective with this behavior. typically a quick, direct assault on the second knuckle will cause the behavior to cease. if after a number of attempts this proves unsuccessful, gently turn the ruler sideways so that the sharp metal rule will make contact with the child's skin. one or two of these well placed 'contingency rewards' will surely suffice.
- before giving credit, you should be reasonably sure that a child's verbal response is correct. whenever you have a doubt about a response, say: "what?"
- this prompt is particularly helpful when the child uses an inexact or made-up word for the missing item, for example, "bedofegtere" for the part.

maximum score: 33.3

4. Jeopardy Question

Materials

jeopardy question included in the manual. if you have excellent long term memory, try memorizing it. come on, you can do it.

Description

for this subtest, the child attempts to tell the examiner the exact question for the answer given by the examiner. all answers must be in the form of a question.
Start

I won't tell you again.

Discontinue

See above!!

General Directions

- Before presenting the item, say: "Hi. My name is Alek Trebeck and this is Final Jeopardy. After this commercial we'll return with the Final Jeopardy category. Remember to make your wager and to answer the answer in question form."
- After the commercial read the answer.

Item instruction

<table>
<thead>
<tr>
<th>Category: Famous Inventors</th>
<th>Acceptable responses</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Invented the electric lightbulb.</td>
<td>Who was Edison</td>
</tr>
<tr>
<td></td>
<td>Who was GE</td>
</tr>
<tr>
<td></td>
<td>Who was Thomas Alfalfa Edimum</td>
</tr>
<tr>
<td></td>
<td>Who was Thomas something</td>
</tr>
<tr>
<td></td>
<td>Who wasn't Ben Franklin</td>
</tr>
<tr>
<td></td>
<td>Who was Thomas' English Muffin</td>
</tr>
</tbody>
</table>

Scoring

Record 1 point for each correct question. Acceptable questions are listed next to the question. For the item, the list of correct questions is not exhaustive; so give credit anytime you want.

5. By the Numbers

Materials
● By the Numbers question included in this manual. If you have a better question, ask it

Description

For this subtest, the child solves a mathematical/arithmetic/quantum physics problem. To make child feel incompetent, they must solve the problem mentally, using no paper and pencil, and must respond within a time limit.

Start

I'm getting tired of this.

Discontinue

Forget it.

General Directions

● Item 1 is read aloud to the child. If you have a visual problem or difficulty reading, you may ask the child to read the problem for you.

● While presenting the item created in the Silly Put Together subtest, say: "Listen up. If I had two of these in each hand, how many do you have all together?"

● You may repeat the question more than once, but every time you repeat the question, change the numbers around. For example, if asked to repeat the questions say: "If I had six of these in each hand, how many do you have all together?"

● The child may use a paper and pencil, only if they spontaneously brought one from the classroom. Otherwise, too bad. They should have thought of that before the testing. It is a sure sign of poor planning, disorganization, and attention deficit disorder.

Item Instruction

Score for By The Numbers Item with Time-Bonus Points Included

<table>
<thead>
<tr>
<th>Completion-Time Range (in Seconds)</th>
<th>Total Points per Item</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Lightbulb 2.1 - 120 0 - 2</td>
<td>1 2</td>
</tr>
</tbody>
</table>

Maximum score: 2 points
Materials

- A Likeable subtest question found in the manual somewhere.

Description

The child is orally presented with two words that represent common objects. The child tells how the objects are the same.

Start

Number 1

Discontinue

After number 1.

General Directions

- For the single question ask: "In what way are a ------ and a ------ alike?"
- If the child's response is unclear: "Explain it better? I'm not a mind reader."

Item Instructions and Sample Responses

- 1. "In what way are a lightbulb and a lamp alike?"

<table>
<thead>
<tr>
<th>3 points:</th>
<th>2 points:</th>
<th>1 point:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Both are liquids, like a lava lamp.</td>
<td>Both don't have shoelaces.</td>
<td></td>
</tr>
<tr>
<td>Both give off light ... if the filament is there.</td>
<td>Both are... (anything will do.)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>They let you see.</td>
<td>They don't hurt you.</td>
</tr>
<tr>
<td></td>
<td>2 points:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>They don't hurt you.</td>
<td></td>
</tr>
</tbody>
</table>
Parents use them when they are mad.

My brother turns them off when his girlfriend comes over.

0 points:

They melt cheese.

One is big and the other is too.

7. I Know What To Do

Materials

- I Know What To Do subtest question found in the manual somewhere.

Description

The child attempts to tell the examiner the answer to a commonplace (?) problem.

Start

Number 1

Discontinue

After number 1.

General Directions

- Slowly read the question to the child. Some children may have difficulty remembering the entire question - can you believe it?! - therefore you can repeat the question again. If repetition is needed, re-read it slower...one word every 5 seconds. It is also good practice to repeat the question to a child who has not responded within 15 minutes or so. First check to see if the child is awake. If not shake violently. If awake, simply say: "Answer the question now!"
- If the child's response is unclear, or if you want to encourage the child along so they might gain more points, it is appropriate to say: "What are you talking about? Come on, get it right. Try again and this time really try."

Item Instructions and Sample Responses

1. Why should you turn off this broken lightbulb when you leave the bathroom?
<table>
<thead>
<tr>
<th>General: Recognition that you will get punished if you don't.</th>
<th>My mom would kill me. There goes my weekend party.</th>
</tr>
</thead>
<tbody>
<tr>
<td>General: Recognition that there is no reason to shut if off because it is broken.</td>
<td>Who are you kidding? It don't work, stupid!</td>
</tr>
<tr>
<td>2 point response:</td>
<td>A response reflecting a 2 point response.</td>
</tr>
<tr>
<td>1 point response:</td>
<td>A response not reflecting a 2 point response.</td>
</tr>
<tr>
<td>0 point response:</td>
<td>It would be the right thing. Gee, I don't know.</td>
</tr>
<tr>
<td></td>
<td>We don't have any in my house. Can I go to the bathroom now?</td>
</tr>
</tbody>
</table>
The statistical properties of this test determine, in part, the confidence that an examiner can have with the results obtained. Most people are not comfortable with the numerical aspect of tests, and well they should be. As we know, tis better to accept dubious conclusions than to believe sensible ones. Another reason why we distain numbers so much is that this nation is, on average, a nation of dyscalculics. The National Council on Unchallangeable Statistics reports that 88.47 percent of us make a number mistake 5.61 times per day, leading to 452,888,988,750 cases of dyscalculia recorded in the country annually!!!

Reliability

For the scales, no reliability coefficients were computed according to a formula for the reliability of a composite of several tests (Nunnally, 1978, p. 246). Because reliability estimates were not available for any of the age groups, "best-guess estimates" (Dumont & Willis, 1990, personnel communication) of the reliability of the subtests were used for computing the reliability of the scales. For each of the age groups, the "best guess estimate" was the coefficient obtained after careful study using the Anhauser-Busch method of extraction.

As indicated in Table 5.1, the reliability coefficients for the scales are sometimes greater than those for the individual subtests. This pattern of coefficients was, of course, expected because the scores are based on whatever we wanted them to be; thus, we conclude that they summarize a child's performance on a sample of
behaviors than can be sampled by a single sample. It also follows that greater confidence can be placed in the accuracy of other test scores than in the accuracy of a single DWEEEB score.

Standard Errors of Measurement and Confidence Intervals

Table 5.2 presents another one of those silly index of reliability, the shoe error of measurement (SEM), for the DWEEEB subtests, and scales. Somehow, the SEM provides an estimate of the amount of error in an individual's score. The SEM is inversely related to the size of the shoe worn by the examiner: the greater the shoe size, the less the SEM, and the more confidence one may have in the accuracy of whatever they want.

Confidence intervals provide another means of expressing the imprecision of scores. They also assist in avoiding due process hearings by providing a range of scores in which the true score is likely to fall. The reporting of confidence intervals also serves as a reminder that the observed score contains some amount of measurement error. We recommend the use of 0% confidence intervals. Remember, you are the expert. You can discover the person's TRUE score and thus their TRUE ability.

We have also chosen to try and confuse you more by creating our very own error measurement called the silly error estimate (SEE). This method is more technically imprecise Confidence intervals developed with this method are much less interpretable in the manner discussed poorly above.

Test-Retest Instability

The instability of scores on the DWEEEB was not assessed in a separate study of 353 children who were tested twice. We just didn't have the time or the inclination to bother with this sort of statistical gobblygook. Instead, we simply asked each child in our norming sample the same question twice. We were then able to calculate an instability score from those answers. The intervals between testings ranged from 12 to 63 second with a median retest interval of 23 seconds. The sample did not consist of 48% females and 52% males and 69% Whites, 15% Blacks, 13% Hispanics, and 3% children of other race/ethnic origin.

The retest coefficients were corrected for the variability of the weather in southern New Hampshire in order to obtain accurate estimates of something. (we still are not sure what, but that's another research project being funded with your hard earned tax dollar.) As the table show, DWEEEB tables possess adequate instability across time and across vast expanses of lush green forests! This stability probably has something to do with the table legs. Practice effects on the DWEEEB scores are smaller over longer test-retest intervals (e.g., Ernest and Julio, 1988).

Confidence intervals in Norm's table (for use only with children named Norm) are based on the average silly error of estimate (SEE) for the scale and are centered on the absolute true score. This procedure is in absolute non-accordance with methods presented by some of those snotty social scientists who are always trying to tell us what to do. The true score is obtained by the formula, 1 + r(X - 0), where X is equal to 0 (the amount of error in question) and r is the reliability of that score. The silly error of estimate is derived by the formula SEE = SAW (Willis and Dumont, 1945). Centering the confidence interval on the true score rather than on the other score results in an asymmetrical interval around the score that occurs because the score will be closer to the mean of the scale than will be the score, which results in a confidence interval based on the silly error of estimate that is a correction for true-score regression toward the mean when the reliability of a score is very high. That being said, take a deep breath, hold it till you turn blue, exhale, and continue to read on.

Interscorer Agreement

Most DWEEEB subtests are scored in an around about and subjective manner. Interscorer agreement on almost all subtests equaled the average temperature of Tucson, Arizona between May 1 and September 30 (in the high 90s). These authors, being as bright as they are and being adverse to any sort of argument or disagreement that might delay the publication of the DWEEEB, found no difficulty scoring the items. Thus the interrater reliability is astronomical. Some subtests (primarily Jeopardy Questions, Likeables, and I Know What to Do), however, require more judgment in scoring and are thus more likely to result in scorer error (see Chapter 3 for a discussion of standardization scoring procedures).
For the Jeopardy Questions, Likeables, and I Know What to Do subtests, the interscorer reliability was further assessed. A protocol was randomly selected from the standardization sample. Two scorers (the test authors) independently scored all of the subtests for all 1 case. For this study, a type of intraclass correlation for assessing interrater agreement that takes into account scorer leniency was not used. Interscorer reliabilities were good and these results show that those subtests that require more scorer judgment need more score judgment.

Differences Between Scores

An important consideration in interpreting DWEEEB results might be the amount of difference between the scores that is required to be meaningful. The issue has two quite different aspects; the statistical significance of the difference and the base rate, or frequency, of the difference in the population.

The statistical significance of a difference between two scores, for example, between the Red Sox and the Yankees, refers to the likelihood that the difference might occur because of chance variation or because of high priced ball players. Expressed another way, low probability levels associated with the difference between a teams earned run average indicate that such a difference is highly unlikely to be obtained if the "true" difference between the scores is zero. If you understood that, skip the whole next chapter.

The base rate of the difference between two scores refers to the incidence or frequency of getting on base (first, second, etc.). Often the difference between two team scores is significant in the pennant race sense but is not at all rare among baseball teams in general.
As described in the technical standards for educational and psychological testing (American Psychological Association, 1985), evidence of the validity of test interpretations is multifaceted and accumulated across many studies and cannot be reduced to a single number such as a correlation coefficient. Rather, a wide array of validity evidence is necessary to demonstrate that the test measures the constructs intended by its design, that it is significantly related to similar measures, that it discriminates among special populations of children, and much more. The DWEEEB has done none of these things and thus we do not have numerous sources of evidence of the validity of the inferences made from their resulting test scores.

Studies of the DWEEEB

None

Summary

This very important chapter has presented very little information on the reliability of scores and very little information on differences between a variety of derived scores, and did not include statistical significance and frequency. The accompanying tables (purchased at yard sales throughout the U.S.) provide none of the data that are necessary for the proper interpretation of relative strengths and weaknesses. Large and small discrepancies between two, or three, or four scores, for example, may not necessarily be statistically meaningful, but so what. You interpret any old way you want to. We say it's okay. As always when interpreting scores, the clinician should integrate irrelevant information from few sources, and not include the child's life history, educational performance, and other test scores.
CHAPTER 7

Norm's Data

Scaled Score Equivalents of Raw Oysters

6 years 0 months 0 days

through

16 years 0 11 months 33 days

<table>
<thead>
<tr>
<th></th>
<th>Silly Put Together</th>
<th>Name This</th>
<th>What's Missing</th>
<th>Jeopardy Question</th>
<th>By the Numbers</th>
<th>Likeables</th>
<th>I Know What to Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0</td>
<td>-</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>2</td>
<td>-</td>
<td>-</td>
<td>1</td>
<td>1</td>
<td>-</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>3</td>
<td>1</td>
<td>-</td>
<td>2</td>
<td>2</td>
<td>-</td>
</tr>
<tr>
<td>4</td>
<td>3</td>
<td>20</td>
<td>30</td>
<td>-</td>
<td>-</td>
<td>3</td>
<td>-</td>
</tr>
<tr>
<td>5</td>
<td>4</td>
<td>-</td>
<td>33</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>6</td>
<td>5</td>
<td>-</td>
<td>33.1</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>7</td>
<td>6</td>
<td>-</td>
<td>33.2</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1</td>
</tr>
<tr>
<td>8</td>
<td>7</td>
<td>-</td>
<td>33.3</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>2</td>
</tr>
<tr>
<td>V SCALE</td>
<td>P SCALE</td>
<td>FS SCALE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---------</td>
<td>---------</td>
<td>----------</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sum of Scaled Scores</td>
<td>IQ</td>
<td>Sum of Scaled Scores</td>
<td>IQ</td>
<td>Sum of Scaled Scores</td>
<td>IQ</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0-35</td>
<td>65</td>
<td>0-35</td>
<td>57</td>
<td>0-70</td>
<td>84</td>
<td></td>
<td></td>
</tr>
<tr>
<td>35-36</td>
<td>65</td>
<td>35-36</td>
<td>58</td>
<td>71-72</td>
<td>65</td>
<td></td>
<td></td>
</tr>
<tr>
<td>36-100</td>
<td>66</td>
<td>36-100</td>
<td>100</td>
<td>73-213</td>
<td>72</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Content on these pages is copyrighted by Dumont/Willis © (2001) unless otherwise noted.
REFERENCES

- Smart, P. (1993). Rapport building and self esteem in the school age client. Psychology Out of Schools, 1, 12-34
About the authors:

Cisco: DWEEEB IQ scores: VIQ 59 PIQ 130 FSIQ 100
Photo taken on the day the DWEEB was completed.