USE OF THE TELLEGEN AND BRIGGS FORMULA TO DETERMINE THE

 balance might be lowering FSIQ scores for children with above-average general intellectual ability and raising FSIO scores for children with below-average general intellectual abilityIn this short paper, we provide two alternative composite scores, which are derived, respectively from the three subtests that enter the VCl and the three subtests that enter the PRI and from the four subtests that enter
the WMI and the PSI. We refer to these composites as the Dumont-Willis Indexes (DWIs) in order to distinguish them from the traditional ten-subtest Full Scale 1 Q, which includes both the six VCI and PRI subtests and the four subtests (i.e., Digit Span, Letter-Number Sequencing, Coding, and Symbol Search) that are not as highly correlated with verbal and non-verbal intelligence as are the six other Verbal and Perceptual subbests, and which load on independent factors in the four-factor solution of the WISC-IV. The Dumont-Willis Indexes separate the six subtests that are stronger measures of verbal and non-verbal inelligence from
the other four subtests.

The DWI-1 score is a six-subtest composite that excludes subtests which load on the WMI and PSI
The DWI-2 score is a four-subtest composite that includes subtests which load on the WMI and PSI.
Examiners may wish to report DWIs when the Verbal (VCI) and Perceptual (PRI) abilities are found to be close to one another yet significantly different from those of the Working Memory (WMI) or Processing
Speed (PSI abilities
The tables for the DWIs are provided below. These tables were developed using the WISC-IV subtest intercorrelations (Table 5.1, page 51, WISC-IV Technical and Interpretive Manual 3 3 , and the Tellegen and Briggs procedure[4]. Conceptually, the Dumont-Willis DWI-1 Index parallels the General Ability Index (GIA) developed by Prifiter, Weiss, and Saklofsk[5] and by Tulkky, Saklofske, Wilkins, \& Weiss $[6]$ for the sum of
scaled scores for the VCI and POI subtests of the WISC-III and WAIS-III. Unlike the DII tables, the GIA tables are based directly on the WISC-III and WAIS-III normative data. Similarly, the Dumont-Willis DWI-2 Index is based on the sum of scaled scores for the Digit Span and Letter-Number Sequencing (WMI) and Coding and Symbol Search (PSI) subtests. This score is very similar to Alan Kaufman's "third factor" " and "SCAD" s. scors. II should be computed and considered only when the four WMI and PSI subtest scores are close to one another and substantially separate from the VCl and
PRI subtests. In those cases, the DWI-1 and DWI- scores may be an efficient alternative means of summarizing the 10 WISC-IV core subtests, but they must never be confused with normative WISC-IV factor and 1 Q scores.
To use these tables, first calculate the Dumont-Willis Index 1 Sum of Scaled Scores (DWI-1 SSS) by adding the scaled scores for the following six subtests: Similarities, Vocabulary, Comprehension, Block Design,
Picture Concepts, and Matrix Reasoning. Find the resulting Dumont-Willis Index Sum of Scaled Scores in the column labeled "Sum of DWI- SSS" in the Tables below and read across the row to determine the DWI score, associated percentile rank, and 95°
confididen confidence interval (based upon the Standard Error of Estimate). Be sure to use the "DWI-1: VCI + PRI" table for the six Verbal Comprehension and Perceptual Reasoning subtests (you will see
equals a standard score of 100). Use the "DWI-2: WMI + PSI' table for the four Working Memory and Processing Speed subtests (you will see that a SSS of 40 equals a standard score of 100).
Estimates of overall abilities calculated in this way should always be clearly identified as DWI scores in both text and tables of reports. These scores must not be confused with the Full Scale IQ, although they may be
more useful estimates of intellectual ability in some cases, for example, for some gifted children and for some children with relative weaknesses in working memory and or processing speed. For the later group, the DWIs may help avoid Dumont and Willis's Mark Penalty, 9 In the depression of a measure of intelligence by a low score on a measure of a student's specific weakness. Other children may score significantly higher on
the WMI and PSI indices than on the VCI and PSI indices, which may mask important difficulties with conceptual thinking if the FSIO is used without the DWIs.

We hope these tables prove useful until Prifitera, Tulsk, Saklofske, Weiss, and/or Wilkins provide us with normative data. (for an update see the additional comments on the use of the DWII and DWI2 found at
Using the DWI or GIA -

ke, D. H. (1998). WISC-III in conlext. In A. Prifitera \& D. H. Saklofske (Eds.) WISC-III clinical use and inerepretation: Scientist-practitioner perspectives (pp. 1-38). San Diego. Academic Press

dUMONT-WILLIS INDEX 1 (DWI-1: VCI+PRI)

DUMONT-WILLIS INDEX-2 (DWI-2: WMI+PSI)

Sun ofow-	DW-2 Score	Pereantile	95\%\% Confidence Range	
41	102	${ }^{53}$	${ }_{9}$	107
42	103	${ }_{58}$	${ }^{98}$	109
43	105	${ }_{63}$	99	111
44	107	66	101	112
${ }^{45}$	109	70	102	114
46	110	75	104	${ }^{116}$
47	112	79	106	117
48	114	81	107	19
49	115	${ }^{84}$	109	121
50	117	${ }^{87}$	111	122
51	119	${ }^{88}$	${ }^{112}$	${ }^{124}$
52	121	91	114	125
${ }^{53}$	${ }^{122}$	${ }^{93}$	${ }^{116}$	${ }^{127}$
54	${ }^{124}$	${ }^{95}$	117	129
${ }_{55}$	${ }^{126}$	${ }_{95}$	119	130
56	127	96	121	132
57	129	${ }^{97}$	${ }^{122}$	134
${ }^{58}$	131	${ }_{97}$	124	${ }^{135}$
59	${ }^{133}$	${ }^{98}$	125	137
60	134	99	127	139
61	${ }^{136}$	${ }^{99}$	129	140
62	${ }^{138}$	99	130	142
63	139	99	132	144
64	141	99	134	145
${ }^{65}$	${ }^{143}$	99	${ }^{135}$	147
${ }^{66}$	145	99	137	148
67	146	99	139	150
68	148	99	140	152
${ }^{69}$	150	99	142	153
70	151	99	144	155
2	${ }^{153}$	${ }^{99}$	145	${ }^{157}$
12	${ }_{155}$	99	147	158
${ }^{73}$	${ }^{157}$	99	149	160
74	${ }^{158}$	${ }_{99}$	150	162
${ }^{75}$	160	99	152	163
76	162	99	153	165

To download demplate press herc

[^0]

[^0]: ${ }^{[1]}$ Wechser D. (2003). Wechster Inetligence Scale for Children (4th ed.) (WISC-IV). San Antonio, TX: The Psychological Corporation
 ${ }^{[2]}$ Wechster. D. (2003). WISC-IV Technical and Interpretive Manal. San Antonio, TX: The Psychological Corporation.
 ${ }^{[3]}$ Tellegen, A., \& Brigss, P. (1967). Old wine in new skins: Grouping Wechsler subbests into new scales. Jourral of Consulting Psychology, 31 , 499-506.

 ${ }^{[5]}$ Kaufman, A. S. (1979). Ineeligent testing with hhe WISC-R. New York: Wiey Interscience.

